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THE ORIGIN OF THE BINARY-SEARCH PARADIGM

ZOHAR MANNA RICHARD WALDINGER
Computer Science Department Arti(icial Intelligence Center

4St infor(1 University SIItraini
Stanford, CA 94305 Menlo Park, CA 94025

ABSTRACT

Ilia hiiitry-'arrh algorithml 1'or the' coirlitatioti of a1 iiiiicrical fitiictionl, tht- iinterval iii which
the (lesiredl mutput is sotight is Iivjidetl iii half. at -hi iterat loll. Thel( paper ('oiilr ho .s1
al~gorithiiis iiiglt lie dlerived frou ticir s1)vciliu-tiolis by alt witoiitic j)flogriii-syithis systein.
Thle decrival ion of the liiiiary-searchi comiept has beeni foutid to be surprisigly straighitforward.
The prog-raiis obi aluci , thoughi reasoitaly siiiidearid eflhcieu it, are quiite (ifferelit froiii those that
wold h11Iave lbevii tut itellyirioutI1('l1..'*.

,oi Avd byhfowlniai

Key~~ ~ l Wod:Tpo ,I jnr , search, real square root

INTRODUCTION

Soiie or tile 1111)51. ('lieielit algorithiuis for thel couitatiou (if ninierical funictious rely oil thre
* 4 techui(hluv of binury .'wureh: liccorIii-g to this ted(li Iiiv, the ijilvirval ill wich-1 Ihle (lesilred otiiit it;

souight is divt(led ill half at. each it.(ratioii tuitid it, i4 suiahier thlaii a giveii toleralice.

%:Fr exaiiple, let. uis -oniside(r thie flllowitig prograiii for fiailli ig ial~iiuhe jpliia~ii to

the stiurare root of a uiouii(g.aive real ninthiier r. Th i4 ' aii sets z to lbe wit~ltiii a givvit positive
toiIeiaUte less t.uai /;.

11 +- Trt(Lxr(r, I
while ( < v do v v/2

if [Z + 1)12 < r then z -z + v
return(z)

Tuis is a classica.l sqiilitre-roll jirlgrLiii hiase~il oil( 01.1tl. ahln'warcl Iill Weu isley 15()1 ni The rograii

esililishue, ;11i41 uuitiiitaiuus 1l11e hnili iuivari.1uul. tha li: is wit huti' oless I 1lua \,/?- i.e., that1 'hr belonigs
- ~~~toP (lit-' hial-ojii jilv(rvatI z, z - 7)). Al. ('iUh ii eralIiit, 1.111 jifli~ti divii les II his ilerval iii Italf aiil
Otest.- whetw \et r- is iii the right or to-ft. lilf, dji't ilig z alld v ii odingy, ilQ 1) is swaller thall

Thisre -itc was slpirehii art b~y thle Natonal Sc-ience Fl iiiiithfl ii i uIi(ir graits MOS-
* 82- 1'1523 and~ M( S-81I-055T 65, biy Defenise Ailvalicel lesearchi ProJects Agetivy utidler Conitract

- - N01)03-81-C(-02 11. b y fhle Ijuui ed States Air Force Olhive oif Sejeuit i liv Iesearch undeir Couultract
* ~~A -'( )M 1-8 -00l4, by the ( )Ilie iif Naval 11.eseatehu iii ier ( .t ,ul cINOOOJ '-84-( -070G, alld by it
* ('(~coli m froim the( Iliteriatioil filisiiiess Machiilies Corporal jif.
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the given toleratice c. The programn is reasonably efficient; it terrinates after r[Ioy2 (-max(r, I)/c)l
iterations.

Analogous programs providle anl efficient mteatis of computing a variety of numerical functions.
It is uot immhiediately obviots hlow stich programns can lbe developed by ant omatic progratii-sylitliesis

* syt.(iii, wich lervc r gants to mneet giveni specifications. Some researchers (e.g., Dershowitz
- and Manna 1771. Smith [851) have suggested that synthesis systems be( providled wit It several genecral

programl sclieinata. which could be0 specializedI is reqirecl to fi particular applicationis. Binlary
search wold be one of these scliiniata. The system would be requmiredl to discovvr which sdcelia,
if anuy. is ap-; dicabde to a nlew prob~lem.

Itmyi ideed bv vadumal do to provide a symt hesis system with Icie(rad Schemia ta, but this
approachi leaves openl thme (jilestionl of how Stich schemilata arc discovered ini the first. place. To our
sutrprise. We have founmd that the concept of biiary search emerges qumite( miat iraly muid e!asily in
thme (derivationis of some nimmmerical programns and (foes nt need to be built ini. Thme p~rogralms we
hlave' obtaired ill this way are reasonialy simpijle and eticieit, b~ut bizarre ini appearanice anid q1uite
diffecrent fromi thtos ~5'we wouldl have coumstructed by) informal means.

Thme prIograms have been ileriveci in~ aI deducmtive framew~~ork (Mamma and Waldinlger [801, [851)
ill which thme pirocess of conistrucetinig a programn is regarded( as at task of proving aiat he1mittical
tijeoreiri. According to this approach, the program's 5spe'cifiationi is lphrasedl as aI theorem, time
theoremn i., prmv((l, andl at jrograin gilaraniteed to mieet the specification is extracted from the
p~roof. If the specification reflects our imteit ions correctly, 110 further verification or testing is
reqhured.

InI this pape~r we outline our dleduictive framework and show the derivition of a numerical
* prooram tiII to) the point at which the biniary-search concept eltierges. We then show several
* aalogouls uiary-sea-ch programrs that have beit developed b~y this mjethod. Fimnally we dliscuss
* ~ ~ what, thse fitidnligs indoicate udI)oiit tihe fprospects4 for aittomatic prograimi synthesis.

DEDUCTIVE PROGRAM SYNTHESIS

InI this sectioni we describe ouir framiiework for dledutctive program synthkesis, emiphiasizing those
ij)(Nets that are e'ssen~tial for t-ie derivation fraguicent that appears iti this paper. Readers; who
woitlil like a fulle~r introdtictn to tis applroachm are referred to Malita and Waidintger ([80], [85]).

* We btg w IIIa ouitlinle of the logical couicelpts we shall neced.

* LOGICAL PILEIIEQUISITES

Thme systemi deails with

*termsi, compjosedl [iii I lie imsual wal of coiistants a, b, c, ... ,variables u, v, Wo,.

funIctionI SYmIbols, aMid the Conditional (if- then- chic) termi constructor.

* tfliri comtposedl or termis, relationt (predicate) symbols, incluidiuig the eutality
* symbiiol =, amd Ltte truth1 syimbols LTup anid fd.se;

L-
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o sentences composed of atoms and logical connectives.

Sentences are quantifier-free. We sonetimes use infix notation for function and relation sym-
bols (for example, x + a or 0 < y). An ex.pres.qion is a term or a sentence. An expression is sidd
to be ground if it contains no variables. Certain of the symbols are declared to be primitive; these
are the (ompitable symbols of our programnaing language.

Let c, s, md t be expressions, where s aid t are either both sentences or both termns. If we
write e as e[s], tlieti f[t] denotes the result of replacing every occurrence of s in is] with t.

We loosely follow the terminology of Robinson 179]. We denote a substitution 0 by (rz

t I. X2 *-- t 2 ..... ,, +- tn}. For aty expression c, the expression c0 is the re.uit of aplying 0 to e,
obtainied lly rplacing every occurrice of the variabl' Xi in c with tle corresponding
term ti. We shall also say that. c0 is an instance of e.

Variables in seitences are given n implicit universal quantification; a sentence is true imer
*- a given intterpretat ion if and only if every instatice of the sentence is true, and if and only if every
* grollld instance of the selitenc' (i.e., anl instance that contains no variables) is true.

Let r, .q, and t be expressions, where . and t are either both sentences or 1oth terms, and let
0 be a sibstitution. If we write c as c[.], tihen cO[tI denotes the result of replacing every occurrence
of .0 ill cO with t.

We now describe the basic notions of deductive program synthesis.

SPECIFICATIONS AND PROGRAMS

A specification is a statenicnt. of the purpose of the desired prograin, which need give no
indication of the method by which that )uirpc, se is to be achieved. (It this paper we consider
only applicative (or functional) programts, which yiehl ani outpuit but alter no data structures and
prodiuce no other side effects. The specificatiomi for these programs have the form

f(a) ,- find z such that ,R[a, z"
where P[a].

In other words, the prograun f we watnt to constrct is to yield, for a given input a, an output z
satisfying the output condition R[. zj, provided that time inlt , satislies the input condition P[a].
It otiher words, z is to satisfy the input-output condition

ithen R[it, zJ.

For examil, stppose we want to specify the program .4qrt to yield a real umitmber z Ihat is -i
within a given tolerance ( less thai Vf, the exac't square root of a given imommegatlive real nullnber
r. 'Thein we might write

sqrt(r, () 4= hlid z sluich that )iM,i.u .i - /

n' < r ,d not [(Z + )2 Availability Cod .es
where 0 < r and 0 < C. iAvail and/or

Dist SpecialO, .no

[ -: -:;-,- :::::" j , -:-."-::-'" --.::-v: : .. :- .: :- :-: . . : -. .. " .".:7 --.; :--::-'*9q;. : -..-.



[in other wordls, we want to find anl output z satisfying thle output condcition

Z2 <r and not[(+ 2<

provided that the inputs r and £satisfy the iput condition

0) < r and 0) < c.

The above sqllar('-root specification is not a prograntatid does not idiCatC a pa~rticiular me1thod
fr comlpit lug t lie sqiuare r'oo t ; it de(scribe, the( iniput-oit puit behavior 4)1 manly prograins, enlj)Ioying

dilh'rentt adgorititns and p'rhaps prodiiviikg dilremilt ouitputs.

Th pogramm wcosider are' sets of expressionls of thle formn

fj (a) 4-- ti,

where ti is at primitive termn, i.e., one expressedI entirely ill the vocabulary of outr p~rogrammlling
* . lanigag. 'Ilest, programis canti be tinut iaiy recursive; i.e., we regard the( fitiictioii symtbols fA m
ft primlitive. lit tite iusual way, such a programn jndjcatc's a method for computing an output. For the(

umost, piart, ini tis paper we shall cousider jirogranis consisting of onily at single expression f (a) c: t
which may lbe recursive.

*Ini a given theory, at program f is said to satisfy a specification of tite above forilu if, for mny
itijiuit a salt istyiiig the inpu~it cond~itim~i P jul, the( program f (a) terminates and produices ant output
t satisfying the output condcitioni R~a, t].

DEDUCTIVE TABLEAUS

The( fuuuidanentah st rictuir(' of our system, the cledlict ive tableau, is at Set of rolus, each of which
uust couut aill a sentencee, e'ither allt assertionf or a gJol; ;my~ of these rows muay contain ait exIpressiolI,

* te (lioutpuct entryj. An exampjle of it tidbleait follows:

assertions goals f (a

P jai______ __

A R[a, zl z

uf q(u)
Mencu R(u, 01

* I~Here u and z arc' variables and a and 0 are constants.

Thiler a given interpretation, a tableaui is trite whevicver the( followig condlitioni holds:

if all1 in~stanlces of c'acli of Ihvc asser1tions* are trit,
thn omue iiil.aitce of at least, one of the goals is trite.

.- .t . .- . ..... " . .
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Equivalently, the I ableau is truv if sonme instance of at least. oile of the aLssertions is fallse- or Soule
itance 'fit least one of thle goals is true. Thus, the above tableaul is true if P [a] is false, if

if q (b)
K then R~b, 01

is false, if R[a, c-1 is trie, or if q(vi) is true (amiong other possibilities).

hI a given theory, at tableaut is said to be vidid if it is triu du~lr any mnodel for thle theory.

* ~Under a giVenit interpret ation anid for a giveli specificatioti

* f(a) '~find z su( i ht Ra,
where P[aj,

a goall is said to have at .uitahdc ouitput entry if, whenever anl instance of the goal is true, the
corresIponinig instance t' of fte output enItry will satisfy the input-output conihtion

if P [a]

(If fte goal has no ex1 )Iicjt output. entry, thent il, is saidl to have a suitable output entry if, whenever
ant inistance of fte goal is truec, atty terin t' satishecs the itiput.-oittput condhititon.) tut assertion is said
to have a1 siuitale olitplut entry if, whenever an instance of the assertion is false, the corres polldfing

instance t' of the olitpuit entry will satisfy the ii iptit- Output condition.

* Example

* Iii thev theory of Hte real nttiibers, -oiisidI(r the square-root specification

sgqrt (t, () <= find z sidi that
.,2 < r and not [(Z 4j 2 < r]

where 0 < r and 0 < c

and tile following tableau:

assertions4 goals tpii

r1. 0 < r and
0 <~

* 2. z 2 <r and

not [(Z +1)2 <r]i

-T 3. notJC2 < ri 0r

This tableaui is valid iii thle theory of real titunibers. because, tinder iuty Inodel of the theory,
S e~ither ft-e assertioi (wihich has ito variables) is ralse Or sOIIIC tttsl atice Of Ote Oif I hu two goalA is
- * t ri. (fit 1)arl ictular, the inst alic oIf goal 2 Olbtainked by lakitig z to be Vi itself is true.)

- . . . '*.., *- . .
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V.

Under any model for the theory, the output entries of the above tableau are suitable for the
square-root specification. In particular, if some instance of goal 2, obtained by replacing z with a,
is true, then a will 4atisfy the input-output condition. That is,

if 0_ r and O<c
then s2 < r and not[(.. + )2 < r]

is true. Also, if assertion 1, which has no output entry, is false, then any termn s satisfies tie above
",.. condition.

"'- UMder a given interprctatiol I ' awd for ai given spc ifiCation, two tablcMIts T" and 72 have the
sare meaning if

7 is true under I
if and only if

' 2 is true under I'

mi1d

the output entries of T, are suitable
if anid only if

the output entries of T2 are suitable.

Iil a giwvn theory anid for a given specification, two tableatis are equivalent if, under any model I
for the theory, the niazung of the two tableaus is the same.

PROPERTIES OF A TABLEAU

Let its 'onsider a particilar theory and a iartictilar secilicalimo, which will both riain fixed
throughout. I his disctission. We shall use the following properties af a tableau:

. Duality Property

Any iableam is (qivalent to the one obtaine~d by removing an assertion and adlding its negation
as a new goal, with tht sante ou iput entry. Similarly, any tableau is cqtiivalvit to ihe o011 obtainted

*/_ by removitig a goal mid adding ils negation as a new assertion. Thus, we could nulIaitag(' with a
syslte'a that has no0 goals or a systemt Iihat. has' imo asertions, but Ilhe disi itl'liolt between assertions
al goals does have so e inliitive sigitilicallce.

*.e Ienaminj Property
S-Anly talhI is eltivalent to the o(te obtained by systematically renaming the variadles of ally

row. More )recisely, we mnay repliace atiy of the variables of the row with new variables, timking
sure t hat all occurrences of the same variable in the row (inchding those in the o tp)t entry)
are replaced by the same variable and that distinct variables in the row are replace'd by distinct
variables. In oldier words, the variables of a row are (Iulmnies that. may be renamed freely.
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- * Instance Property

Any tableau is equivalent to tite one obtained by introducing m a new row any instance of
an existing row. The new row is obtained by r.)lacing all occurrences of certain variables in tile

-" existiug row (including those in the output entry) with terms. Note that the existing row is not
replaced; the new otie is simply added.

THE DEDUCTIVE PROCESS

Contsider a partic ilar tleory and the specification

f(a) <-: find z such that , [a, z1
where P[aj.

We Form the initial tableau

issertions goals f()

([a, zi z

We may also inchde in the initial tal)heai (as an assertion) any valid senteinc'v of the theory.

Note that the output entries of this tablean are suitable: Undcr any mod, for the theory, if the
initial assertion P[al is false, then any ouitpilt satislies the inljptt-oitput. condition vacuously; and

- if soime iistace .R[a, tj of the intilal goal is true, the correspondiiig instaiwe t of tle associated
otput itentry salisfies the iiti)it-ouLptit condition. Furthcrmtore, the valid sentences inchnded as

* initial assertions 'almot be false.

We aitenlht to show that the above tathblai is valid. W proced by applyilg oetiAuctioi rules
Sthat add new rows wit.hout chaging tlk t-ablvau's luwauiug in aniy i ttdl for 1t, I heory. In other

r. words, utnhlr a given model, thi- t-ableau is trie before aplplic{aliol of the ride ii'and only if it. is true
afterwards, and the output ',ntris are suitable before if and only if they are suitable afterwards.
We describe tit(, dedtetion rules in thi next section.

The deductive process conitinues iln il we obtain either of he two rows

[ ___________-~ true~

* or

false t

where ti output. enitry t is primitive, i.e., expressed entirely in the vocabulary of our programming
laniguage. (We regar(d tihe iniput c'onstaitt a and the function symbol f as lpriltitive.) At this point,
we derive the program

f(a) -zt.

... ".-...-.-.". . .. -. .
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We claim that t satisfies th given specification. For, in tieapplyiing the deduction rules, we have
gitaranteed that the flew output entries are suitable if the e'arlier output entries arv suiitale. We
have seen that thc initial output entries are rll suitable; tliereforc, thle final outtput entry t is also

* ~~suitalble. This nieans that, und(er any model, if the filg rei rt rth iilasrinlb
* ~is false, the corresponding outp~it entry t will satisfy 1.1w iiiput-outpitt cond~itioni

if P[a]
then .Zfa, t].

Butt llid~er any miodel the trulth symbols true anl fals~e are true and false, respectively, and hence
t Will S;ItiSf.y the i11 1)lt-Oilttt condition. Therefor-e, thle program f(a) t dloes. satisfy the speci-
licatioti.

THE DEDUCTION RULES

We nlow iiit rodlive the dediuction iles of our system, 'iniphiasiziig those that play a role in thc
portions of I he' s(Itiare-root dlerivation we present. We begin with the simpJlest of the rules.

THE TRANSFORMATION RULES

The transformation rutles replace subexpresions of an mi aSertioii, goal, or output entry with
equal or eqpi valent. expressions. For imstajice, With the transformxation rutle

P and true P,

we (-,%lt replace' the( subseiitcice ((A or B) and true) with (A or B) in the assertion

*((A or B) and true) or D 0

yielding

(A orB) and D-

WithI 1.114, I rl'isf rntatioii rile( (it, .t~'i te ory of inite(gers or reals)

u + u -- 2u,

* ~We can replace a subterin (a + b) + (a + b) with the termi 2(a + b).

We, ise ain assocutzuve-commnutative mai~tchintg algorithini (cf. Stickel 1811), so that thec issociza-

* ~~tive and coiuimitatjve propuerties of operators can be Laken inito accomuit, ini applyiiig the tratnsfor-
miatioii rides. Thits, we, cai itse die albov( riles to replace a sublst'ul uce (true aind B) with the
sentence B and the -ubterin( + b) + 6Withi the Lerni a +- 2b.



Wi' inlclude a complete set of true-f aloe h-axsfornat iou rifles, such as

not false - true
if P then false not P.

Pwpeted .1~pplicitd oni of t hese ru1les call cliinzat. fromi a tablvai I row aniy o(ciiirncvi of (tic truth
symboils true and~ failse ats at projier stihxcntence.

The soundniess of th liIratistormiiiit 111rles is ev idenit. siuice vach p~roduices ani e'xpressioni (Iiv-

* ~alvit or equl (ill the theory) to the4 ne to Which it. is applied.

* THE RESOLUTION RULE: GROUJND VERSION

- . ~The resol t ii ni rle c()rresp)4Iils to case malysis ill iiiforu-ml reasoiiing. We first jreselit tile

grou~nd versiVUL of I liv rule, wich appicis to gr oinld goills. We express it ill t~ltv followih;g notatioln:

asscrtioiM goals f (a

F[truej if P
and then s

g [fa.sej else t

Ii ohe wris, stippose our Itableait eoitaiiis two groid goals, 7r and 9w w se o tpu t. etrie
%aeS aid t I respectively. Slippi se l51rther t lid f ri h lave a commoniiui siulbseiiteiice P. Theni

we miay derive md addu to oitr ;lelit tlhe iew goal obt aiticdi y ro~plaviiig all occurrences of P iii

Y' Willi truc, replarmug all occuuiueles of P ill g Willi failme aid Formuiuig thle coiijuuiclion oif tile
re(Slts. The otiutpfiil iilry asso(iaI (ei with I lic dleiived goal is ilie coliiliouial i'xplie55ioii Whose test

-~ i Iliii coiliuoli silbexpressioui P aiid whjose then-claulse aild ei.s-chauuse are Ilic ouitjpi viilries s~ and~
* ~ ~ fo .~u7 aiid 9, respect ively. lBecaim, die resolu.iou rule always juti rodlitces occirreiices of t he Itith

* ~~~~symboul Os trae midi false. avs p~roper siihscitcuccs, we (-ill iliiie' hiately ;11l)l Iruef-f VLI.C I' iii 0Iisiuul lionl
rule1s to I lie ilerivei goal.

For exampille, siip)pI)se our tablvaui coiit aiui I lie rows

asvri-t goalls f (a b)lii~

and(z b) (711(a) a

riot (if r(b) i/urn j..(a, b)]) b

Thlese goals have a coiuuuoii siuuh"t'utiuce pJit, 1)), iiilicatel lby boxes. Therecnfore we muay (hen ye andi
add~ to mllr tableaul I ie( ihew goal1

0 y



true and q(a) if p (a, b)
and then a

not (if r(b) then false) else b

By repeatedl application of transformation rules. this goal reduces to

q~a) ad r~b)if p (a, b)
q~a) an r (b)thien a1

else b

Ifoeof t lie givenl goals hias o( iit t (entry. tie( (lerivell outit t entry is iiot ai coilitioil
vXpressioti it is simiply the ouit 1)it eut ry of tie( ot her giv('i goal. It iieit her giveni goal h as an ouitpuit

entry. thle dIIIi Ve( goal] llas 110 ouitpult (eltr c''(1ier. We do not r('qiire thlit the t wo gi Veil goals be

(istiiict we( maiy apply tite ritle to it goal and itself.

We haive' Jreseiitced tite resoliitioi i il a it applies to two goials. A(crii tote(Iilt
Tp('prt~y OF tabi leaiis, liowo'ver, we' mayi1 tranisfoirm ;til assert ion inito a1 goal simpjly by nlegatinig it.
Therefore, we ctit apply tie( ruile to an assertioni and at goal, or to two aissertions.

* ~The resoliit ion rule maiy be rest ict edl by a polairity streltegy (Mi irzay 1821; see also Manna and

Walitiger 1801), accoroliiig to wich we nieed not aply th le il'i iziless 5OJ011 OCliiieiice,( Of P inl

.is "p)05i Ii v( and~ som le occurrenice of' P ill 9 is iiogat ive' . (Hevre a Si l'itb ii((' of at tableau is

regard ;s positive or iiegat ive if it is withl 1.1iv scop 5O~))f ai respctively eveni ori' od tininier of
1iiegat ll liItie5. Leu assertion is coinsideredl to) be oWitilill tie( scopeC of ;uI imiii c it negat ion;

* . tuns. whil e goalsare positive, isse'rtiois are negative. 'lie- if-claiiso P of a siil~seiitehicc (i/P then Q)
is collid lrell to lbe wit hil iite 5(op.( of ali a ldhit ioiial1 inmploicit iiegat ioll.) This strategy allows uts to
disregardl iny utseless al)Ipi;tioiis of tite nile.

Let. uis show thait tin' resoluition rutloe is soiiol that is, illi a giveni itiolel of the 0hirury and for at
givo':' spieciftittol. 11 liettialling of tic' kohI'la is Ithe sativ liefoi' aiid after apphlicat ion of the itle.
It. act al ly sli lice(s to sito w that, if i.1 i oherIiveo(l goalI is lii el al leakst oiiie of I lie givenl goatls is
trile; and if H ie given ii iutp11it entries are, suitble, s1 is I ie( dleriveo'oltit, entry.

* ~~~~Si ijjoso th lie rived( goal (YFtrucl and 9 tfiIal) is t rue. Theni hoithI its coiilic s Y[ truc] midl

9 [falsel atre Iilet(. We (list itigiisli betweenl two eases, ('Jpeninlg otit whliot hr or iit t ie( commilion

5 ils('i0itcei(O P is I rib or fias('. Ili thle case' iii which P is f rill', the 1giriiiiill goal1 F(PI hats Ilhe saino'
I ru1th-value1 ats the o'lilict JlItrio; float is, YriPJ is i'. [1i filie casc' ill Which P is fallse, thec goal%

91P has thle satio' 'i I-1 11vailue ais then cot; jiituel 9 lfoilm.I; thlit is, 9 [Pj is 11-1ue. fii t ltetcase line

oil' Ilto' two) given goals, 7[)PJ a~nd 91P1, is tinn'.

Now :issimii that thle giveni out put enties are suiitabic(. To show that thli derived (itif~piit enhtry
* 15~~i siliitale, W('S ilpjiose Ilm 0atth derived goial is Intio' and estaiblish thlit. (flie (lenivel iit,i entry

sattisfies tie( iii pi t-oi it pit conidit ion. We have seen thatt. inl the caise il which P is trite, the givenl

go1ia 71,P] is ti-li i; lbecai iso its ii i utt 'it nry s is sita~l f, it satisfies tie( i iput- oiI put colidoitioti.
* ~~Sinuilarly, ill the casoe ill which P is false, Ilhe terni t satisfies thle inpuin -otit t. condilitioin. Iii either

case, therefore, the( coujo l i lii eXprCoii (if P thn-1 1 se t) sat-isfies the, iiipi it -4)1 ptl iii conuidition;
* ~~bitd this is I lie (horiv('( oiitluit enitiry.
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* THE RESOLUTION RULE: GENERAL VERSION

We have tlescril)('( the groun 1(1version of the resoluio ru1 nle, which applies to goals wit.1 noc

* ~~varial es. We uoW ptreseit tHi( general versiou, W ir'li a'pi iles to goalIs Wit It IirbICtS. III t his Case,
* ~ ~ ~ t ;II an pply ax silbstItiltioii to t lie goals, as necessary, to creatcea c'ommolnI stibsetit (lice.

assert ions goals f (1)

70 [rue]if Po
aInd then so

* .9[fatseI else to

Mot. re tci.t'Iy. stippose otir tabhleaui conitaiuis g-oals .7 and g9. wich have no0 variab~les ini comm~oni.

(Thiiis cani Iv te ensl ret by reriamuilg" thle varialies of' thle rows as iecessary, accordinig to thet rc itmifly

property.) St ipi se furthecr t hat ,onile of' thev subsentenes oti 7 and so tiie of t he( siilseniite(S of9
are iicilc. With Ii amost-geiieral ifiier 0; let )PO be the iiiilied suibsentezice. Theni We may derive
anid addt to itoir t al taii thle nc 11Wgi a obtamined by i)' placiiig all occii rren ces of PO ill 70o Withi true,

-replitcing ;ill o tc(Ies of PO 'it 90 with fnldsy. anid forinig (,te coijiiiiiiioti of the results. The
asi5tI tt' 0 t i ()l lillet ry is a cond(it ional eXfpressioii whlose test is the uificdit siihseiitemic PO and
whot se thic-lalise anid eise-clattse are thet ('0(trreSpo~iig jus-t alices 8O and t0., respec'tively, of the

III ottler wortls, t~o ;1ply the genleral ver-sionl of the rille tot 7 andI 9, We apply the grounid
* ~ ~~~ versioii of I ie( ii If)li 70 andh 00. Th e soiuidns I it'~f t he( g('ui'al ver-sion t~otiItws from theio' 01idnlueS9

- ~~~of I lie grin i d V('rsjti. The poltarity si rat egy api its as In'Fero'c. If We W ishi I( oiaptly the ri ule to all
assert iol ;ul,tI a goal or t~o two a),sertj0ios, We caII regard thle assert ions ats goals boy negaltig I hin,

* a~-s ill tilt- grotiild~ c'ase'.

For o'Kamputl(, 5111)f)(s( 0111 talau conitainis the irows

assertions go alls fita, b)

zf~ (a,: b)

nat [f (1, .). n I

'1'l boxedl subsIten nes are' iifiahtie; a inost-general iimiil'uer is

0 xJi a, v . b, y~ f f(a, b)}

..............................................
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The substiitelices are respectively positive and negative, as indicated ly the annotation. We may
regard the assertion as a goal by negat ig it. By application of the general version of the resolution

rule, we may derive the new row

true and1
4? [p(f (a, b))
:'':and y (f (a, b))

n [if q(a, b) 1
[not then fal.seJ

By the applicatiou of true.f ae transfoirmation rules, this goal reduices to

p(f(a, b))
,,_,7and if(f (a, b))

q(a, b)

Note that tlhe unitfier 0 has been applied to all varialbles in the given rows, including those ill the

output eiiry. Because the given assertion has li outplt entry, tlie derived outtput entry is not it

--. cconditional expression. This apl)lication of the rule is in accordatice with the polarity strategy.

The resolt ion rile and the true-false t ransformation riles hav, been shown )y Murray [821 to

conistitute it conlete system for first-order logic. Thv polarity strategy nmaintains this complete-

'less.

We Ilse an asso'iativ,-ColUiLliitativ, hinifcation algorithml (as in Stickel [81]) so that the as-
sociativ( and comlliltaliVe properties of smidh operators as addiliol and conjunction cain be taken
into accoi itl ii finding a uinitier; thits, p (f(x) + (b + fJ(())) can be ;iiilied with p((,(y) + f(b)) + x).

We have iiitroduicel two addilimal rules to give special treal eriti to eqluality and other imu-
portaint relatio1s (Maniia ani Wahlinger [85]), but hese rules play no part, in tihe portion of the
dlerivatiin to he discussed.

WVe shall 'cVCd the induction rule; this we describe next.

THE MATHEMATICAL INDUCTION RULE

Ti, rules presented so far do iiot allow itS to iut.ri'liice aly repelitive coni-.riii't into the

prtogrami beig derived. The iiuduucliou 'ile accouni ts l'r l ilel rohiii ofl recirsioi il lhe derived
. lprograii. We emiploy a single w'll-Io'ilied inl'ict ilu rleh, which ;alllie's Il it varie'ly l tieorie4.

A welli-fouided relal,ion .<in is oil, that admits ll) iinfiiite decreasing se(lnces, i.e., mqillences

,-, 2, X 3, ... , such that

*.T £, >-wX 2 and X2 -, X3 and ....

For instance, tie less-Ilhan relation < is well-fomide inl Ilie tleory of nonegative integers, but

not ill Ihe, theory of real niilnbers.

., . . . . . . . . .

* . -.. .:* ** :* . * *

* -..O-..**
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The version of the well-founded induction rule we need for the derivation is expressed as follows
(the generld version is more comphx):

Suppose our initial tableau is

s.i'.tio go stl)utsi.~~~~ ~~ , ''tilsot] (a)

[a]_..._ _ [a, zJ z

Ii oilier words, we are attImpting to consiruct a prograin f that., for an arbitrary inplit a, yields
•It output. z satisfying the iliput-oittput condition

if P [aI
then RIa, z].

According to the well-founde1d induction rule, we may prove this assuming as our induction hy-
p,,thesis that the program f will yield an output f(x) satisfying the same input-otitput condition

then RI[, f(x)]

provide(d that x is less than a with respect to some well-founded relation -,, that is, x -<, a. In
other words, we may add to our tableau the new assertion

if x - a
then if Pixi

* then RIx, f(x)]

Ti'he well-founded relation "s, ised in the indltiction rule is arbitrary aid must be 5,lCt.ed later in

the proof.
For exiimph,, 'omi(hr the initial tabh,lai obtaiied froinite square-roo, specification:

asertions goals .qrt (r, )

O<r and 0 <t

z2 < r and

not [(Z + <r]

By apljIiattion of I It well-fotiimdn ilihic'l.ioa rule, wm zaay itl roditic as a new assertim I Ith, iiidulc-
t ion hypothesis

if (x, v) (,.
tun i/ £O< and O <u

then (sqrt(z, 1)], < x and

not ([.,qrt(x, I') f- ] 2 < x)

.* /z
i ,.--*. .~' *- *. *. ** ~ ** .*. ....... • .-..... ................ . . . . .. * .. **.
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In other words, we may assume ind~uctively that thc output of the square-root program we construct
will satisfy thc input-output condition for inputs x and v that are less than the given inputs r and
cwith respect to sonme well-founded relation *~

Use of thle inducitionI hypothesis in the proof may account for the introdulctionl of a recuii~ve
call int the derved I~ gai. For example, suppose that in the square-root derivation w iarg

to dlevelop) a goal of form

The boxed si L1sCInteiices of this goal and the induction hypothesis are iiiable; at mrost-general
utnifier is

( - .4, {x v -6z - qrt(s, 6)}.

Therefore, wve cani apply the resolution rude to ob~tainI time new goal

9 [truel
aind

not then if () < .4 andt 0 < 6
[ then false

* This goal reduhces under tranrsformnationi to

Note that a recursive call sqrt (.-, 6) has beenitjut rodhiced into thev outpit enitry A a result of
this step). The cond~it ion (0 < R 4nd 0 < 6) in the goal iustires the( legality or the .irgumzelitS S anid
6, i.e-., t hat t hey Satisfy I lie iliplit cond~itiomi of the desired pirogramn. Thew condition (s, 6) -<. (r, )
elislir1es thlat the eyaluial ion of the recursive call cannot lead t~o a tuouterniiuatig coihuittion. (if
there wvre' an ilulite crflhi~intioi, we coild nstriwt ;% correspouujig iliuiite .Se(hueIIc( of pairs
of arginyNels decreas41lg with resp~ect to <, thits couid.radhict.iug the leliitioii of at well-fomnded

* ~~The pa.rticiflar well-rouiuideol relation -<R referred to inIi h iinluitioii liyjpothes is not yet
specifiedl; ii is sel tedat a later siago' of thie p~roo4f. 11' we allow well-rounded relations to be ob~jectsl
in our domuaiin, we ty regarol the senitenIce x.~ y ats an abbreviation for -<(to, x, yj); thus, wo
is it variab~le t hat may he istantiated to at particular relation. We assiunue that the propertie's oIf
niany knowii well-founded relations (such ias <ICC thev Irol(r-siihitree relation over trees) and of
futidots for comibining I o'tui are among thc mssertions of our initial tableau.

We have given theo simuuplest versionu of thie induict ion rifle, which is appliied onliy to the initial
rows of the tableau; in its general version, we muay ap~ply the ruile to any of the rows, and we may
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strengthen or generaize the rows to which the rule is applied. In this more general version, the
ride accounts for the introduction of auxiliary subprograms into the program being constructed.
We shall avoid discussion of auxiliary subprograms here.

We are now ready to present the most interesting segment of the derivation of the s(lluare-root
program.

THE DERIVATION

Recall that, in the theory of real inmbers, the specification for the real-ninmber syquare-root program
* is

sqrt(r, 4) = find z such that
z 2 < r and not [(z- +C) 2 <r],

, where 0 <r and 0 < '.

In other words, we want, to fiud an estimate z that is within a tolerance . less than 1 the exact
9Q square root of r, where we may assume that r is nonnegative and c is positive.

We begin accordingly with the tableau

assertions goals .utputs

1. 0<r and 0 <c

2. <7  and not [(z+ c) < r]

-The assertion and goal of I.is tableatt are tW input and ottlput conditious, respectively, of the
given specihcation; the outpitt entry of the goal is the oulilt variable of the program.

THE DISCOVERY OF BINARY SEARCH

We are about to apply the re olution rile to goal 2 and itself. To make this step eatsier to
"- .." miiderstanld, h us write antlher copy of goal 2.

[ 2'. P< r ,,nd not ( , <

W have renametd the variable of the second copy of the goal, so that the two copies have nIo
variables in coolnlit.

The boxed sulbsentences of the two copies of time goal are umuhlable; a most-general uwifier is

*0: {z 4*+ C}

Therefore, we c(an apply the resolution rule between the two copivs of goal 2 to obtin

6

.. ,. .. . ..- , . ,4 .-. - . - * . I-,., -'..,'- "4.."".- -... ,- *.. . '4-". -- * .-.."o.4 .. 0 ,-4 . 4 j rP.40r.'- " ' ] ' "" " " ' "" '- " -"" . ."" "" " ' "" '"""" " ' " " " "" ' "" "" " ' '" 'L " ~ ' l
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true and not [((+ + ) < r] if (& +) 2 <r
and then , + e

i 2 < r and not false eIe e

-*. By application of transfoirmation nles, including the rule

u + u - 2u,

this goal caui be reduced to

i2 < rif (i + f) 2 < r
3. and then ; + c

not [(i + 2()2 < r] else i

* :-:'I (We have reor(lered the conjuncts for pedagogical rea.ons only; because we 8associativ-com-

imitative unificatio n, their actual order is irrelevant.)

According to goal 3, it s uffices to fin1(d a rougher estimate i, which is within a tol'rance 2e less
. than vr, the exact square root of r. For thcn either i +, or i itself will be within c less than vr,

dependig on whelher or not ; + c is less than or equal to vr . The two possibilities are illustrated
helow: z"°' + E i + 2c' ci+2

C ase: i + c < Case: not [p +c < v4 I

Goal 3 contains tie essential idea of binary search as applied to the ,4quare-root. prol)em.
AIllihogh the idea seemus sli)tl' to ts, it appears almost. inmindineacly in the derivatliou. The step
is nearly iuevilable: any Ibrit,-force search procedure woild discover it.

The derivation of goal 3 is logically straightforward, but the intititoin behil it may be a bit
nysteriolls. Let us paraplhrae the reasoning in a nmore g oetric way. Our initial goal 2 expresses

I*O that it. sil'ices to limd a real imber z -such that i belongs to lhe half-opcn interval Iz, z + ).
- Our rewrilten goal 2' expresses thai it is equally aceltable to lind a real nimbuler 4 sich that v/r

beloigs to I li halif-oien iiterval [z, . F- ). We shall I)e contenit. to achieve either of these goals;
. i.e., we shall be happy if \/r beloigs to either of ite two half-,,pen inter,'vals. i takiig , to Ie

.-. "". z -I- t. we are comcalva.i g the two iitervals, ,lljtiauig a new lalr- ou'wm ili.erval -z, z I" 2 ) twice
- th le',gl h ,,f thei. original. It s ullic.s to liml a real nminler z sm'i thal, \/r lelongs to this new,

longer interval, becasells, te r Imnilst belong to one or the other of 1 lie two smialler oned's.

INTRODUCTION OF THE RECURSIVE CALLS

Let ms covti -th, tlerivation one, more step. By the well-fom ided induction rule, we may
introd(uce tIhe induction hypothesis

. ..
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if (x, v) <a, (r, c)

then if 0< and <v

%tn [.sqrt(x, V)]
2 < and

.% -not ([sqrt(x, v) + V] 2 z)

In other words, we assume inductively that the o,,tpmt .uqrt(x, v) of the program will satisfy the
uinpit-output condition for uiy inputts x and v suich that (x, v) - (r, (). The boxed sul)sentences

of goal 3 aiid thC induction hypothesis are muitiable; a most-general tuitier is

0 {z -- r, v t- 2(, -- .qrt(r, 2()}.

We obtain (after true-false I ran-sformation)

4. (r, 2c) <., (r, c) if [sqrt(r, 2()+ e] 2 < r

and then sqrt(r, 21) + c
0 < r and 0 < 2c else Sqrt(r, 2c)

Note that at this point three recursive calls sqrt(r, 2c) have been introduced into the output
(entry. The condition (0 < r and 0 < 2c) ensures that the arguments r and 2( of thesr recursive
calls will .atisfy the input condition for the progran, that r is nonnegative and 2( is positive.
The condition (r, 2() -,, (r, () ensures that the newly introduced recurisive calls cannot lead to
a nontermilaLing computation. The well-fouided relation -<.., that serves as ti( ba;sis for the
induction is as yet unspecified.

We omit those portions of the derivation that. accomt for the introductioni of the base case
and the choice of Lhic well-fomunded relation. The final program w( obtain is

.4qrt(r, ,) < , <f " .,,(r, 1)
then if [.,qrt(r, 2,) + (12 <

then -4qrt(r, 2.) - c
else sqrt(r, 2)

else 0.

9. A few wor(s on this program are in order.

I)ISCUSSION OF TIlE PROGRAM

The program,, first, checks whel her tihe error tolerattce is reasomally small. If is very big,
that. is, if inax(r, 1) < theii the out)tt can safely be takeui 1.o be 0. tFor, hTcauIse ( < r, we have

02 <.

And because max(r, 1) < c, we have r < and I < c, and hence r < C2 - that is,

not C(0 )2 < r].

".o.
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,. Thus, 0 satisfics both conjuncts of the output condition in this case.

If c is small, that is, c < max(r, 1), the program finds a rougher estimate sqrt(r, 2), which is
within 2( less than /r. The program asks whether increasing this estimate by i will leave it less
than v'r. If so, the rough estimate is increased by c; if not, the rough estimate is already close
enough.

The termination of the program is a bit probleuatic, because the argunnt c is doubled with
each recursive call. However, the arguiment r is 'michamged an( recursive calls are evalmited only in
the case ill which ( < mClax(r, 1), so there is a tuiforim| tlipper boumd on these incrvasing arguments.
More precisely, the well-fomnded relation -<... selected inl the proof is one, sich that

provide(l that 0 < y !5rnax(r, I).

If tie lititltiple occurrences of the recursive (all -4qrt(r, 2() are combined by etitminating comn-
111011 sitd lkxrcssions, he lprogram we obtain is rcasIial)ly licient; it requires [log 2 (max(r, t)/A)]
recursive calls.

Omr final proIgram is somewhat differvnt from Ili iterative program we considered ill the

i)eginiiig. The itcrative program divides an inte'rval ill half at each iteration; the recursive p~rogram
doitblhs ill iiterval with each recursiv, call. Division of the interval in half occurs implicitly as the
recuirsive program unwinds, i.e., when the recursive calls yield output. values.

It is possible to obtain a version of the iierativ program by formal derivation within the
dmtltilive-tabihati system. Although tiv derivatiol and ite restlting program are more comphex
(it r(ttiiir',s two adilioni.I in|puts), it, was this derivation we discovered first, because we were
already familiar with the iterative program.

We first fotid ti receitrsive program ill examiiniig the cnlslu cltices (f purely forimal derivation
steps, hotl betalise we expected Iclem to lead t(, a programn bnit because we wer(' lI king for strategic
Coisi'.ltdvr;t itms that woild rle tlIh'in (it. Wh('iLt w( ( xalihi(,(l t lie programt iiiitially, we stiS ected
;%it (frrli i|I I, dcrivatlion. We liad iti't seen programs (f Ibis formi before, aih wc cetaritinly woutld
nt h.ave cotIruct('ed t l(i ' by inforiimal metans.

ANALOGOUS ALGORITHMS

Many Iinary-search aigmiiris have been derived iV( ;i ati alogoits way. Let its lirst consider some
,ill|tier real-niuiiernca jlrlfhlis.

REAL-NUMBER ALGORITHMS

Siiplpsov a progran to pe'rfori r('al-nulmb(,r division is specified as follows:

div(r, s, ) - find Z such that
z.. < r ,,,t {(- + f < ,]

where 0 < r and 0 < .. and 0 < c.

• , - _ .. " , ., ' .-. • -- , • - ' .- " ' ." .. . .,. . -,.-. . . . . .. .. - -. " - ".- .% ... ' ''i''' -, . '



In other wordls, the program is reqluired to yield a real itnber z that is within a tolerancec less
titan r/s, the exact quotient of dividing r by s. We obtain the program

div (r,s, c) t= if c < r
then if [div(r, s, '20~ + c] -. < r

then div(r, ;, 2c) + c
else div(r, s, 2c)

else 0.

Thle ratiomale for this progratt, like its dlerivation, is analogous to that for the real-titnilier

- ~ ~ laeroot. The' prograin first checks whectheri the error I oleralice is reasoitaly simall, that is, if
s < r. If c is very big, that. is, if r < c - , then the output Ci;ui be taken safely to) be 0. For

becaus~e 0 < r, we have

0 -s < r.

And because r < t. - , we have r < (0 + ')s, that is,

not [(0 + C) .8< r].

Thus, 0 sa1tisfies both .onljutl(.s of the ouitput Condition ill this case.

Oil thle other hanld, if (is simal, that, is, if c s < r, the programn finids a rotigher estimyatc
div(r, s, 2(). which is within 2( less than r/.4.. The programn counsiders whether ii creasing this
e'stimiate by ( will leave it less t hant r/.s. If so, the( rough estimiate miay be increased by q if not,
tit rough et'timiate is already close eugh.

The terinitiation p~roof for this programn is also analdogotus to that for the square root. Although
the argiutieit is douled wi(t each reciirsive call, thec other argmunenis are aichangvd and the

alsaeevahugateil onily inl the case in which i - s~ < r, that is, < r/. Tiu, hre i. a iiiiform
upper bound onl the( doutbled argument.

1t, muay bv clear from tit(e above discussioni that. there is hil-l e il thev derivations for thie square-
-. root anid dlivisionu programs Iluat de~pends on thme properties of these funictionis. More- or less the samte

dervatonsiflices I~o Ihmil t approimnate soltittoit to anarbitrary reah-iminbuler eiliat ioit f(z) r

ragivei mpItJt, ta e Huot f, we coitsiler l1me specilicalion

sovcr ) tiid z sutch that
f (z) 5 r find not [f (z + r ]

where f (a) :5 r andt[l~

Her a nd ar prmitve ousaut dis a variable. Iut other wordis, we, mine that there

exist real numbewrs a and b sutch that f(a) !S r antd f (u) > r for every real u greater Ulanutb. The

"'41
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spccification is illustrated ws follows:

f(u)

a z+e b

Note that we do not need to assume f is increasing or even continuous; if I is not continuous,
an exact solution to the equation f(a) = r need not exist, but only an approximate solution is
required by the specification.

OR. The program we obtain is

solve(r,c) = if a + c < b
then if f(solve(r, 2c) + .) < r

then solv e(r, 2c) + c
else s.olve(r, 2c)

else a.
b In the recursie case, in which a + c < b,.the program is so closely analogous to the previous
binary-sea h programs as to req(uire 110 further explanation. In the base case, in which b < a + c,
the output can safely be taken to be a. For, by our input condition, we have

f(a) < r

and (again by our input condition, bl-Cause b < a + c)

not [f(a +-F) < r].

Thus, a satisfies both conjuncts of the output condition in this case.

The above prograin may be regarded as a schema, b'ausec we may take the symbol f to
be any primitive function 4yjmbol. An even more general hinary-search program scheina cau be
d1erived fr,,i tlw specification

,.carch(r, 4) find z such that
p(r, and not p(r, z + )

where p(a) and [h, , (,)

where p is a primitive relation symbol aud a and 6 are primitive constants. We obtain the schema

" sarch(r,) 4- if a+c<b
thcn if p(r, scarch(r, 2() + c)

.* then ,search(r, 2() + F
else s arch(r, 2c)

else a.

[ .,72
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INTEGER ALGORITHMS

The programs we have discussed apply to the( nonnegative rcal numblers; using the same

ap1 proach, we have derived analogous progranis that apply to the tirniiegative integers. These

derivations requiire a generalization step in applying the indtiction rule. We have avoidedl presenting

genueralizAationi an(] the concoiniit introduiction of auxiliary prograllis in ti" pap~er, bit. we give

ionic resuilts of these derivations here.

Integer square root

The integer square-root program is intendled to find the integer part of V/-i the real siuuarc
root of a nonnegative integer n. It cani be specified in the theory of nonnegative integers as follows:

sqrt (n) c:- find z suich that
z2 < n and not[(Z + 1)2 <n].

In other wordls, tit( prograini must yieldl a noiinegative integer z that is within 1 less than Vn.

In the cotirse of the derivation, we are led to introduice wui auxiliary program to nmeet the more
q general specification

sqrt2(n, i) 4- find z sutch that
z2 < n and not [(Z + i)2 < n]

where 0 < i.

In other word.;, we wish to find. -v ionnegat've intege'r z that is witii less than vf-& This atixiliary

spe'cification is p~recisely analogous to the real-wni nler sqi are-root specitication, with i playing the
role of tihe error tolermuxce c.

The( progranis we obtain to inee these specificationks are

where

.'qrt2(n, i) 4- if i < n+j]
then if [.4qr/2(vs, 2i) + n

then iq(r12(n4, 2i) + i

els ,qt2n,2i

ris~e 0.

biutcgcr quotient

The integer wIttolient. progra n e blye specified similarly:

*p qurt(Ich, we ) 4= find z stl u that
Zrlit < M nd not (uxia n < m i

where 0 < n.

z2 <a nnt-el 2 <]

hdohrwr.,tepormms il ongtw'itgrzta swti esta /

Int4cus ftedrwtow r e oitoue:taxlaypormt ettemr
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In other words, we wish to find a nonnegative integer z that is within I less than m/n, the real-
number quotient of m and n.

I" the course of the derivation, we are led to introduce an auxiliary program to meet the more
general sj. 2-cification

quot3(m, n, i) = find z such that

z-n < m and not[(z + i).n < n]
where 0< n and 0 < i.

S"In other words, we wish to find a nonnegative integer z that is within i less than m/n.

The programs obtained to meet these specifications are

" quot(rn, n) = quot3(m, n, 1)

where

quot3(m, n, i) = if i- n < m

then if [quot3(rn, n, 2i) + i] n < m

then quot3(m, n, 2i) + i

else quot3(m, n, 2i)

CIS e 0.

The derivation is again analogous.

DISCUSSION

The derivatins were first discovered manually; the real-number squarv-root derivation wit
slibs('(Illttly i')rodll(A.t, by Yellin, in an interactive progranm-sytlehsis systeim. The onliy automatic
iiiijlhciil ation of tIhe' system (IRisscll 1831) is miable to construcl. the derivation for a simple re son:
it never atthmnipts to apply the resolution rule to a goal and itself.

The results of this investigation run counter to otr uisal experience. It is common for a bit of
rcasoning that seems simplh and iniluitively straighltforward to tifrn out to Ibv dificilt to formalize
amd more dilficill still to dnlplicate auttonmaLically. THere Hir olposil,e is true: an idea that requires
a stlbstaut.ial leap of hiuunan ingeittily to dis'over is captured mechamically ini a few ,asy formal
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